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Two-dimensional arrays of optical waveguides, which feature dispersion, nonlinearity and discrete diffraction, support the 
propagation of spatiotemporal solitonic structures. Several structures with intrinsic vorticity S = 1 and 2 were studied by 
means of the variational analysis and numerical methods. Some vortices with S = 1 are stable. Numerical studies of 
interactions between them make it possible to identify four typical outcomes of the collisions, depending on the initial 
relative velocity of colliding solitons: rebound of slow solitons, fusion, splitting, and quasi-elastic interactions of fast solitons. 
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1. Introduction 
 
Theoretical and experimental studies of discrete 

spatial solitons (alias lattice solitons)  have attracted a 
great deal of interest in the past years in the fields of optic 
and matter waves, see, e.g.,  reviews [1]-[4].  

A fundamental model of lattice media amounts to the 
discrete nonlinear Schrödinger (DNLS) equation [5]. A 
direct realization of the one-dimensional (1D) DNLS 
model with the cubic nonlinearity in arrays of optical 
waveguides was first proposed in Ref. [6]. Later, the same 
DNLS equation was demonstrated to describe, in various 
theoretical and experimental settings, Bose-Einstein 
condensates  (BECs) trapped in deep optical-lattice 
potentials, see, e.g.,  Ref. [7]  for a review. Lattice vortex 
solitons, i.e., localized lattice excitations with embedded 
vorticity, that were predicted in Ref. [8], were created in 
2D virtual photonic lattices [9]-[10]. In addition to the 
fundamental discrete vortices with topological charges 

1S = +  and 1S = − , higher-order solitary vortices, with 
| | 1S > , and multipole solitons, such as quadrupoles, 
were predicted in Refs. [11,12]. Two-dimensional (2D) 
spatial solitons were recently created [13] in a bundle of 
fiberlike waveguides permanently written in bulk silica by 
means of the technique based on tightly focused 
femtosecond laser pulses. Similarly structured 
quasidiscrete 2D solitons, including solitary vortices, were 
predicted in photonic crystal fibers [14]. 

It is worthy to mention that the settings based on fiber 
bundles, or arrays of waveguides written in bulk silica, 
feature a very fast response to variations of the light 
beams, which suggests a possibility to study 
spatiotemporal optical solitons (alias light bullets) in such 
physical settings, i.e., the temporal evolution in the 
longitudinal direction and quasidiscrete spatial patterns in 
the transverse direction; for a review of the topic of 

spatiotemporal solitons in nonlinear optics and BEC see 
Ref. [15]. Thus semidiscrete “light bullets” in arrays or 
fibers [16] and in photonic wires [17], self-compression 
[18] and steering [19] of pulsed beams, and the 
modulational instability [20] have been considered. 
Moreover, spatiotemporal optical solitons in models of 
waveguide arrays with the quadratic nonlinearity were 
studied too [21]. Semidiscrete spatiotemporal surface 
solitons were recently introduced in semi-infinite models 
of waveguide arrays [22] and at interfaces between two 
different waveguide arrays [23]. Available experimental 
techniques allow the creation of solitary modes in bundled 
arrays of optical fibers, thus the study of semidiscrete 
three-dimensional (3D) spatiotemporal optical solitons, as 
localized states which are continuous along the 
propagation axis and discrete in the transverse plane, is of 
much relevance. The same localized structures should be 
relevant to the description of 3D matter-wave solitons in a 
self-attractive BEC trapped in a deep 2D optical lattice 
[24]. Recently [25], we have reported results of a 
comprehensive analysis of spatiotemporal vortex solitons 
and quadrupoles in the semidiscrete 3D model. It was 
demonstrated that solitary vortices with “spin” (vorticity) 

1S =  and quadrupoles, in the form of rhombuses which 
are based on a set of four guiding cores, with an almost 
empty one at the center (on-center vortices), have a vast 
stability region. Solitary vortices of the “square” type, 
without an empty site in the middle (off-center vortices), 
feature a much smaller stability region, and all vortices 
with  vorticity 2S =  are unstable [25]. It is worthy to 
mention that a related work was performed [26] for vortex 
solitons with topological charges 1S =  and 2S =  in the 
continuum counterpart of the model, which includes a 2D 
periodic potential in the transverse plane. Families of 
discrete vortex solitons in the full DNLS equation in three 
dimensions were also reported [27]. Recently, we reported 
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results of a systematic numerical analysis of collisions 
between localized 3D semidiscrete soliton complexes, viz., 
rhombus-shaped vortices, quadrupoles, and fundamental 
solitons, in the model of a bundle of fiberlike waveguides 
[28]. The model also describes a 3D self-attractive BEC 
loaded into a deep 2D optical lattice. Four generic 
outcomes of the collisions were identified: rebound of 
slow solitons, fusion, splitting, and also quasielastic 
interactions of fast solitons [28]. 

The present paper is organized as follows. In Sec. 2 
we briefly overview the studies of existence and stability 
of 3D vortex solitons in optical fiber bundles. We consider 
complex spatiotemporal semidiscrete solitons in a model 
of a set of nonlinear optical fibers which form a square 
lattice in the cross section. The problem of collisions 
between localized 3D semidiscrete complexes, viz., 
rhombus-shaped vortices, quadrupoles, and fundamental 
solitons, in the model of a bundle of fiberlike waveguides 
is briefly reviewed in Sec. 3. The paper is concluded by 
Sec. 4. 

 
2. Spatiotemporal vortex solitons in optical  
     fibers bundles  
 
In a recent work [25] we analyzed complex 

spatiotemporal semidiscrete solitons in a model of a set of 
nonlinear optical fibers which form a square lattice in the 
cross section. The nonlinear optical medium was recently 
realized as a set of parallel waveguides written in fused 
silica, see, e.g., Ref. [13]. As mentioned above, the model 
investigated in Ref. [25] may also apply to a self-attracting 
Bose-Einstein condensate trapped in a very strong quasi-
2D optical lattice. By means of the variational 
approximation (VA) and using numerical methods, we 
constructed several species of the semidiscrete solitons, 
including vortices of the rhombus (alias cross, or on-site) 
and square (off-site) types, with vorticities 1S =  and 

2S = , and quadrupoles. The VA was developed for 
narrow cross vortices with 1S =  and quadrupoles, which 
turn out to be the two most stable species. Two finite 
stability intervals were also found for the square-shaped 
vortices with 1S = , while all the vortices with 2S =  
were found to be unstable. 

Generally, a vortex is represented by a pivotal point in 
the wavefield, around which there is a continuous 
circulation of a certain physical variable. In optics, the 
localized optical vortices (alias optical vortex solitons), 
have drawn much attention as objects of fundamental 
interest, and also due to their potential applications to all-
optical information processing, as well as to the guiding 
and trapping of atoms. At the pivot of an optical vortex, 
the complex amplitude of the electromagnetic field 
vanishes, while circulation C of the phase of the complex 
field around an arbitrary closed contour surrounding the 
vortex core is a multiple of 2π, that is, C=2πS, where 
integer S is the same topological charge of the vortex 
(“spin”) that was introduced above. Thus the phase 
dislocations carried by the wavefronts of light beams are 
associated with the zero-intensity point at the pivot; the 

wave is twisted around such points, creating an optical 
vortex.  

Using adequate numerical methods, we have solved  
the coupled system of equations for the local amplitudes of 
the electromagnetic waves um,n (z,τ) in the bundle of fiber 
waveguides [25] with the square-grid cross section, where 
the continuous variable τ is the reduced time, z is the 
propagation coordinate and (m,n) are discrete transverse 
coordinates in the waveguide array. We have found 
families of stationary solutions of the governing 
propagation equations [25] which are parametrized by 
propagation constant μ, looking for them as um,n (z,τ) = 
exp(iμz) Um,n(τ), with functions Um,n(τ) obeying a system 
of coupled ordinary differential equations. Recall that the 
definition of the vortex requires the phase of complex field 
Um,n(τ) to change by 2πS, with 1, 2,3,...S = , as a result 
of a round trip around the center of the vortex. In this way, 
we have found two types of semidiscrete vortex solitons, 
viz., the above-mentioned on-site-centered “rhombuses” 
(“crosses”) and off-site-centered “squares”. The former 
species, with 1S = , is based on the frame (“skeleton”) 
composed of four lattice sites, with coordinates (m,n) = 
(1,0), (0,1), (-1,0), (0,-1), while the central site, at (m,n) = 
(0,0), remains empty. The “square”-shaped vortices do not 
include an empty site at the center, placing the “virtual” 
pivot of the vortex between lattice sites. Accordingly, the 
frame for the square vortex with 1S =  is composed of 
four sites with coordinates  (m,n) = (0,0), (1,0), (1,1), 
(0,1). 

 
 

Fig. 1.  A typical example of a stable vortex soliton of the 
cross (on-site-centered) type, as  per  Ref. [25].  Here the   
                    propagation constant is μ = 20. 
 
A typical example of the stable vortex found slightly 

above the stability threshold [25], viz., at  the value of the 
propagation constant μ = 20, is displayed in Fig. 1. It  is 
worthy to notice that stable vortex solitons of this type are 
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generated with propagation constant cr 19μ μ> = . This 
figure includes a set of temporal profiles of the soliton in 
the continuous coordinate, |Um,n(τ)|, and a contour plot 
which shows the transverse distribution (on the square 

grid) of the single-site energy, ( )
2

,m nE U dτ τ
+∞

−∞
= ∫ . 

A typical example of a stable square-shaped vortex is 
shown in Fig. 2 for propagation constant μ = 5 (stable 
vortex solitons of this type were found in the region of  3 < 
μ <  8 [25]). 

We have also  investigated the stability of vortices 
with 2S =  and of quadrupoles. Although the quadrupole 
solitons carry no vorticity, they are akin to the vortices 
with 2S = . We have found that, similar to the situation 
of the case of 2D lattice solitons (without the longitudinal 
direction), the quadrupoles may be stable, while all 
vortices with 2S = , of either type (rhombuses or 
squares), are completely unstable [25]. A typical example 
of stable quadrupoles is displayed in Fig. 3 for propagation 
constant μ = 25 (the quadrupoles were found to be stable 
for μ > 20 [25]).  As concerns unstable soliton species, 
various scenarios of the instability development were 
identified, that include the straightforward decay, merger 
of the complex semidiscrete localized pattern into a single 
fundamental soliton, or splitting into several mutually 
incoherent fundamental solitons, each carried, essentially, 
by a single core of the array [25]. In some cases, the 
eventual state may include stable coherent pairs of in-
phase solitons (the latter outcome is characteristic to the 
instability of quadrupoles). 
 

 
 

Fig. 2.  A typical example of a stable vortex soliton of the 
square (off-site-centered) type, as per Ref. [25]. Here the  
                      propagation constant is μ = 5. 

 
 

Fig. 3.  A typical example of a stable quadrupole soliton. 
Here the propagation constant ia μ = 25, as per Ref.[25]. 

  
 

3. Interactions of spatiotemporal solitons and  
     vortices in fiber bundles  
 
Once stable soliton complexes with the topological 

structure have been found, an issue of straightforward 
interest is to consider collisions between them. In Ref. 
[28], we have recently performed a systematic analysis of 
collisions between solitons of the most robust types, i.e., 
rhombic vortices and quadrupoles, including collisions 
between the vortices with topological charges  
( ) ( )1 2, 1, 1S S = + +  and )1,1( −+ , that is, “co-rotating” 
and “counter-rotating” vortex pairs, as well as collisions 
between vortices and quadrupoles. In fact, the 
investigation of interactions of spatiotemporal solitons and 
vortices in fiber bundles is a generic example of the study 
of a 3D conservative model which makes it possible to 
consider collisions between vortex solitons in three 
dimensions. We also considered collisions between a 
rhombus-shaped vortex and fundamental soliton carried by 
the central waveguide of the bundle, which is nearly empty 
in the vortex state [28]. It is worthy to mention that very 
recently, collisions between coaxial 3D solitons with 
embedded vorticities were studied in the framework of the 
continual complex Ginzburg-Landau equation with the 
cubic-quintic nonlinearity for both co-rotating [29] and 
counter-rotating [30] configurations. Also, the generic 
collision scenarios between nonspinning and spinning co-
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axial 3D dissipative light bullets, described by the 
complex Ginzburg-Landau equation with the cubic-quintic 
nonlinearity, were recently presented [31].  

It is worthy to mention that we recently analyzed the 
interactions between discrete surface light bullets in both 
1D and 2D photonic lattices, where we observed a variety 
of collision scenarios and different outcomes, such as the 
soliton fusion, soliton switching, symmetric and 
asymmetric scattering [32]. Moreover, we recently 
considered continuous-discrete spatiotemporal models 
described by the complex Ginzburg-Landau equation [33]-
[34]. Also, the domains of existence and stability of in-
phase (unstaggered) on-site (single-peaked), inter-site 
(double-peaked) and flat-top-like (four-peaked) dissipative 
light bullets in 2D photonic lattices were determined, and 
various instability-induced scenarios of the dynamics of 
these discrete Ginzburg-Landau spatiotemporal optical 
solitons were described [35]. Further, systematic results of 
collisions between both discrete and continuous 
spatiotemporal Ginzburg-Landau solitons were reported in 
Refs. [36]-[37].  

In the following we briefly present the generic results 
for collisions between “co-rotating” rhombus-shaped 
vortices, i.e., ones with equal topological charges, 

1 2 1S S= =  [28]. Collisions between vortices with a 
large relative velocity naturally lead to their passage 
through each other. The passage is quasielastic, but not 
always completely elastic. From the typical example 
displayed in Fig. 4, we see that the collision gives rise to a 
slowly developing splitting of each rhombus into two pairs 
of fundamental solitons located at opposite vertices of the 
rhombus; in this case, only trajectories of the fundamental 
soliton components which build the vortices are shown in 
Fig. 4. At smaller velocities or larger values of the energy 
of the vortices, the collision becomes strongly inelastic, 
leading to a merger (fusion) of the vortices into a single 
one of the same type as shown in Fig. 5.  At essentially 
smaller values of the relative velocity, repulsion between 
slowly moving vortices actually prevents the collision, and 
as a result, both vortices come to a halt, keeping a large 
temporal distance between them, see Fig. 6. In Ref. [28], 
we have also investigated collisions between “counter-
rotating” rhombus-shaped vortices, i.e., ones with opposite 
topological charges, S1  = +1 and S2 = −1. In that case, the 
results are quite similar to those reported above for          
S1 = S2 = 1. 

Collisions between identical quadrupoles give rise to 
outcomes of the same four types as identified above for 
rhombic vortices: (a) rebound of slowly moving objects,  
(b) fusion (full or partial fusion, in case of the collision 
between vortices with equal or opposite charges, 
respectively), (c) splitting (possibly with the formation of 
bound states of two solitons), and (d) quasielastic passage 
of fast solitons through each other [28]. 
 

 
Fig. 4. A typical example of  the quasielastic collision of 
two identical rhombus-shaped vortices, with topological 
charges 1 2 1S S= = , propagation constants  μ 1 = μ2 = 
20, and relative velocity ΔV = 8, as per Ref. [28]. 

 

 
 

Fig. 5.  A typical example  of the merger (fusion) 
resulting from the collision of identical rhombic vortices, 
with propagation constants  μ = 22 and relative velocity   
                       ΔV = 8, as per Ref. [28]. 

 

 
Fig. 6.  An example of the collision between two identical 
slowly moving rhombic vortices, with relative velocity  
ΔV = 2 and propagation constant μ=22, as per Ref. [28]. 
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4. Conclusions 
 
We have presented a short survey of recent theoretical 

results produced by studies of spatiotemporal semi-
discrete vortical solitons in the model built as a bundle of 
nonlinear optical fibers with the anomalous group-velocity 
dispersion, which form a square-shaped lattice in the 
transverse plane. Stability regions were found for on- and 
off-site localized patterns with intrinsic vorticity S = 1, 
which are shaped, respectively, as rhombuses and squares, 
and for quadrupoles, while all vortices with 2S ≥  are 
unstable. Also investigated in detail were collisions 
between co-axial vortical solitons and/or quadrupoles. 
Basic outcomes of inelastic and quasielastic collisions 
were identified. 
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